Abstract

BackgroundThe tumor microenvironment (TME) of colorectal cancer (CRC) mainly comprises immune cells, stromal cells, tumor cells, as well as the extracellular matrix (ECM), which holds a pivotal position. The ECM affects cancer progression, but its regulatory roles and predictive potential in CRC are not fully understood. MethodsWe analyzed transcriptomes from CRC tumors and paired normal tissues to study ECM features. Up-regulated ECM components were examined through functional enrichment analysis, and single-cell sequencing identified cell types producing collagen, regulators, and secreted factors. Transcription factor analysis and cell-cell interaction studies were conducted to identify potential regulators of ECM changes. Additionally, a prognostic model was developed using TCGA-CRC cohort data, focusing on up-regulated core ECM components. ResultsBulk RNA-seq analysis revealed a unique ECM pattern in tumors, with ECM abundance and composition significantly related to patient survival. Up-regulated ECM components were linked to various cancer-related pathways. Fibroblasts and non-fibroblasts interactions were crucial in forming the TME. Key potential regulators identified included ZNF469, PRRX2, TWIST1, and AEBP1. A prognostic model based on five ECM genes (THBS3, LAMB3, ESM1, SPRX, COL9A3) demonstrated strong associations with immune suppression and tumor angiogenesis. ConclusionsThe ECM components were involved in various cell-cell interactions and correlated with tumor development and poor survival outcomes. The ECM prognostic model components could be potential targets for novel therapeutic interventions in colorectal cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.