The production of traditional building materials like cement, lime, and common fired bricks consumes considerable energy and resources and causes atmospheric pollution. Thus, it’s essential to develop more eco-friendly materials for new construction. This research focuses on an earth-straw mixture stabilized hybridly with cement and active MgO. Three aspects scaled from material mix design and mechanical performance to building energy-saving simulation were examined. Three types of earth were considered, and the effects of MgO on M−ME were studied through compression strength, thermal conductivity and TGA tests. The best compressive strength achieved was 12.5 MPa (about 167 % of the standard for non-burned bricks and 125 % of the standard for minimum fired bricks), and the best thermal conductivity was 0.371 / (m·K) (only 44.2 % of that of common fired bricks). Using Design Builder software, energy load differences between M−ME and fired clay brick walls were simulated under given conditions, and the indoor thermal environment was analyzed. Based on the amount of wall earthwork used in the project, the M−ME wall (YC3) can theoretically capture approximately 12.80 kg/m3 of carbon from the air under natural curing conditions, mean while reducing heating energy consumption by 9.49 %. Overall, the utilization of soil and the presence of plant straw give M−ME advantages in carbon footprint and thermal performance over sintered and concrete bricks. As a new energy-saving material, M−ME significantly contributes to carbon reduction in production and operation phases, possessing great potential in decarbonizing the emission of the building sector.
Read full abstract