Tree roots are vital for tree ecosystems; accurate root detection helps analyze the health of trees and supports the effective management of resources such as fertilizers, water and pesticides. In this paper, a deep learning-based ground-penetrating radar (GPR) inversion method is proposed to simultaneously image the spatial distribution of permittivity for subsurface tree roots and layered heterogeneous soils in real time. Additionally, a GPR simulation data set and a measured data set are built in this study, which were used to train inversion models and validate the effectiveness of GPR inversion methods.The introduced GPR inversion model is a pyramid convolutional network with vision transformer and edge inversion auxiliary task (PyViTENet), which combines pyramidal convolution and vision transformer to improve the diversity and accuracy of data feature extraction. Furthermore, by adding the task of edge inversion of the permittivity distribution of underground materials, the model focuses more on the details of heterogeneous structures. The experimental results show that, for the case of buried scatterers in layered heterogeneous soil, the PyViTENet performs better than other deep learning methods on the simulation data set. It can more accurately invert the permittivity of scatterers and the soil stratification. The most notable advantage of PyViTENet is that it can accurately capture the heterogeneous structural details of the soil within the layer since the soil around the tree roots in the real scene is layered soil and each layer of soil is also heterogeneous due to factors such as humidity, proportion of different soil particles, etc.In order to further verify the effectiveness of the proposed inversion method, this study applied the PyViTENet to GPR measured data through transfer learning for reconstructing the permittivity, shape, and position information of scatterers in the actual scene. The proposed model shows good generalization ability and accuracy, and provides a basis for non-destructive detection of underground scatterers and their surrounding medium.
Read full abstract