Heat generation and dissipation in dry polymer bearings are important aspects in their design and operation, because the overheating may lead to fast wear or product damage. The estimation of the maximum temperature under defined load conditions is crucial, but it is also a challenging task. Firstly, it is difficult to measure temperature directly at the contact surface between the bearing and the shaft. Secondly, thermocouples that are commonly used as the temperature sensors might create measurement errors. The work presented in this paper utilizes the numerical model of a polymer bearing for the analysis of the internal temperature field. The model is validated with use of experimental data; and, in order to mitigate the measurement errors of the thermocouple sensor, their geometry and properties are included in the simulation model. The achieved agreement between simulation and experimental temperatures is 10% on average, and it is judged that the numerical model may be applied for thermal analysis of the polymer bearing. The obtained results confirm the influence of the thermocouples with metallic sheaths on the temperature distribution inside the tested polymer bearing. It is shown that the value of the measurement errors depends on the layout of thermocouples and might be significantly reduced by their proper arrangement. It is believed that the presented approach for the analysis of thermal performance of dry polymer bearings might be applied to similar cases, which are characterized by large temperature gradients and require temperature sensors, that are made of the materials of high thermal conductivity.
Read full abstract