Abstract

Organic polymers are generally regarded as thermal insulators because amorphous arrangement of molecular chains reduces the mean free path of heat-conducting phonons. However, recent studies indicated that single chains of polymers with highly oriented structures could have high thermal conductivity than bulk polymers because stretched polymer chains effectively conduct phonons through polymeric covalent bonds. Here, we demonstrated the possibility of non-covalent virus assembly prepared by simple flow-induced methods toward high thermal conductive polymeric materials. Films with high thermal diffusivity composed of non-covalent bond-based assemblies of liquid crystalline filamentous viruses were prepared using a simple flow-induced orientation method. Structural and thermal characterization demonstrated that highly oriented structures of the viruses in the film were attributed to the high thermal diffusivity. Our results will open attractive opportunities for biomolecular-based thermally conductive soft materials even though the assemblies are based on non-covalent bonds.

Highlights

  • Organic polymers are generally regarded as thermal insulators because amorphous arrangement of molecular chains reduces the mean free path of heat-conducting phonons

  • Structural characterization by small-angle X-ray scattering (SAXS) indicated that films with well-packed and highly oriented structures are essential for the high thermal diffusivity even though the assemblies were based on non-covalent bonds

  • Because the Polarized optical microscopy (POM) and atomic force microscopy (AFM) observations demonstrated that the phages in the film were oriented in the plane direction, it was suggested that the substantial increase in the thermal diffusivity on the outside was not caused by the orientation of the phage being perpendicular to the film plane as well known chain orientation effects of conventional polymers[5,10,11]

Read more

Summary

Introduction

Organic polymers are generally regarded as thermal insulators because amorphous arrangement of molecular chains reduces the mean free path of heat-conducting phonons. Films with high thermal diffusivity composed of non-covalent bond-based assemblies of liquid crystalline filamentous viruses were prepared using a simple flow-induced orientation method. Structural characterization by small-angle X-ray scattering (SAXS) indicated that films with well-packed and highly oriented structures are essential for the high thermal diffusivity even though the assemblies were based on non-covalent bonds. These results provide insight into the relationship between the oriented structures and the thermal conductivity in polymeric materials and provide attractive opportunities in the science and engineering of next-generation thermal conductive soft materials composed of non-covalently assembled structures

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.