Metallic alloys are extensively utilized in applications where extreme loading and environmental conditions occur and engineering reliability of components or structures made of such materials is a significant concern in applications. Adiabatic heating in these materials during high-rate deformation is of great interest to analysts, experimentalists, and modelers due to a reduction in strength that is produced. Capturing the thermosoftening caused by adiabatic heating is critical in material model development to precisely predict the dynamic response of materials and structures at high rates of loading. In addition to strain rate effect, the Johnson–Cook (JC) model includes a term to describe the effect of either environmental or adiabatic temperature rise. The standard expression of the JC model requires quantitative knowledge of temperature rise, but it can be challenging to obtain in situ temperature measurements, especially in dynamic experiments. The temperature rise can be calculated from plastic work with a predetermined Taylor-Quinney (TQ) coefficient. However, the TQ coefficient is difficult to determine since it may be strain and strain-rate dependent. In this study, we modified the JC model with a power-law strain rate effect and an explicit form of strain- and strain-rate-dependent thermosoftening due to adiabatic temperature rise to describe the strain-rate-dependent tensile stress–strain response, prior to the onset of necking, for 304L stainless steel, A572, and 4140 steels. The modified JC model was also used to describe the true stress–strain response during necking for A572 and 4140 steels at various strain rates. The results predicted with the modified JC model agreed with the tensile experimental data reasonably well.