The conventional approaches for treating bone defects such as autografts donor tissue shortages and allografts transmission of diseases pose many shortcomings. The objective of this study was to design a nano strontium/magnesium doped hydroxyapatite (Sr/Mg-HA) with chitosan (CTS) and multi-walled carbon nanotubes (MWCNT) (Sr/Mg-HA/MWCNT/CTS) biocomposite was created to support the growth of osteoblasts using a solvent evaporation method. To help the growth of osteoblasts, a solvent evaporation technique was used to design a nano strontium/magnesium doped hydroxyapatite with chitosan and multi-walled carbon nanotubes biocomposite. We studied the biocompatibility and efficiency in vitro of biocomposite following physicochemical analyzes. Tests of biocompatibility, cell proliferation, mineralization, and osteogenic differentiation have shown that in-vitro safety and effectiveness of biocomposite are good. The performance of biocomposite was more efficient in in-vitro as well as in vivo experiments than in Sr/Mg-HA nanoparticles. Briefly, the Sr/Mg-HA/MWCNT/CTS biocomposite is an ideal candidate for effective bone repair in clinics with excellent mechanical properties with durable multi-biofunctional antibacterial properties and osteoinductivity.