Improved battery performance has led to significant advancements in anode materials, with powder-based anodes emerging as a promising alternative to traditional graphite anodes[1,2]. Next-Generation Non-Lithium Batteries, like potassium and magnesium–ion batteries require anodes tailored to the ion diffusivity and anode-electrolyte-cathode compatibility[3,4]. Candidates like bismuth, magnesium, and antimony-based anodes can maximize specific capacity and cycling stability. Passivation film formed on their surface causes large potential drop and energy loss[5]. The alloys with tailored chemical composition can improve the electrochemical behavior of the anodes and significantly promote film formation influencing the interface with electrolyte[6]. Current powder-based anodes preparation methods involve mechanical milling, which produces irregular particles and distorts the structure obtained by eutectic solidification, which can showcase outstanding electrochemical properties[7,8]. We propose a powder production method based on ultrasonic atomization technology[9]. This technology uses the vibrations to eject the particles from liquid metal. Plasma or induction heating can be used for melting, allowing a wide range of metals to be processed. Powders obtained by ultrasonic atomization possess high sphericity which can stabilize the dissolution rate of the anode during cyclic charging and facilitate obtaining uniform coating thickness. Thanks to vibrations instead of high-velocity gases the powder production unit is much smaller and suitable for research and alloy development.[1] J. Zhao, Z. Wei, N. Chen, F. Meng, R. Tian, Y. Zeng, F. Du, Energy Storage Mater 2024, 65, DOI 10.1016/j.ensm.2023.103127.[2] B. Fu, G. Liu, Y. Zhang, Z. Liu, X. Xie, G. Fang, S. Liang, ACS Energy Lett 2024, 3292.[3] Z. Zhao-Karger, Y. Xiu, Z. Li, A. Reupert, T. Smok, M. Fichtner, Nat Commun 2022, 13, DOI 10.1038/s41467-022-31261-z.[4] D. Gu, Y. Yuan, J. Liu, D. Li, W. Zhang, L. Wu, F. Cao, J. Wang, G. Huang, F. Pan, J Power Sources 2022, 548, DOI 10.1016/j.jpowsour.2022.232076.[5] F. Liu, G. Cao, J. Ban, H. Lei, Y. Zhang, G. Shao, A. Zhou, L. zhen Fan, J. Hu, Journal of Magnesium and Alloys 2022, 10, DOI 10.1016/j.jma.2022.09.004.[6] X. You, X. Zhang, C. Yu, Y. Chen, H. Li, Y. Hou, L. Tian, N. Yang, G. Xie, Journal of Rare Earths 2023, 41, DOI 10.1016/j.jre.2022.04.011.[7] S. B. Wang, Q. Ran, R. Q. Yao, H. Shi, Z. Wen, M. Zhao, X. Y. Lang, Q. Jiang, Nat Commun 2020, 11, DOI 10.1038/s41467-020-15478-4.[8] L. Cao, M. Zheng, G. Dong, J. Xu, R. Xiao, T. Huang, J Mater Sci Technol 2025, 211, 278.[9] A. Priyadarshi, S. Bin Shahrani, T. Choma, L. Zrodowski, L. Qin, C. L. A. Leung, S. J. Clark, K. Fezzaa, J. Mi, P. D. Lee, D. Eskin, I. Tzanakis, Addit Manuf 2024, 83, DOI 10.1016/j.addma.2024.104033.
Read full abstract