Abstract

Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from 10^{17},{text{m}^{-2}, text{s}^{-1}} to 5 times 10^{21}, {text{m}^{-2}, text{s}^{-1}}. Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately 4 times 10^{8} He at 5 times 10^{21},{text{m}^{-2}, text{s}^{-1}}. After 1 h of exposure, the helium inventory varies from 5 times 10^{16} ,{text{m}^{-2}} at low flux and high temperature to 10^{25} ,{text{m}^{-2}} at high flux and low temperature. The bubbles inventory varies from 5 times 10^{12} bubbles m^{-2} to 2 times 10^{19} bubbles m^{-2}. Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments.

Highlights

  • Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method

  • A simplified model for He clustering in W based on the existing model by Faney et al.[29,30] was presented

  • Medium sized clusters were not explicitly accounted for and all immobile clusters were described by the grouped quantity cb

Read more

Summary

Introduction

Helium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of eV. Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The helium inventory varies from m−2 at low flux and high temperature to high flux and low temperature. The bubbles inventory varies from bubbles m− 2 to bubbles m− 2. The bubble density simulated by the model is in quantitative agreement with experiments

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call