The immune response is essential for the human body to function well and to survive against the sudden and chronic diseases such as viral & bacterial infections and cancers. In the immunosurveillance process, Natural Killer (NK) cells are one of the main elements in controlling the development of such infections and, for this reason, they have become the subject of “in-depth” studies especially for the application of new forms of immunotherapy. NK cells can rapidly destroy both autologous and tumor cells in vitro and for this reason the interest in their function is increasingly growing. Their presence in the tumor micro-environment (TME) also assumes prognostic value since the repertoire of NK cell receptors has been linked to anti-tumor function. In this work, a Markov chain modeling approach is proposed to analyze the network of interactions that NK cells carry out with other immune elements in the defense against cancer such as CD4+ cells and CD8+ cells and dendritic cells (DCs) that activate and enhance immune responses. The probabilistic approach used is promising since it helps to understand the balance and the communication in the micro-environment, in a realistic manner. The advantage of discrete time Markov chain approach is that, it can be further extended to complex networks using the state-of-the-art algorithms and can also be translated for the novel AI tools for the cytokines and protein databases.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
4921 Articles
Published in last 50 years
Articles published on Markov Chain Model
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
4920 Search results
Sort by Recency