In this study, the treatability of marble processing wastewater by electrocoagulation using aluminum and iron electrodes was investigated. The sample used was from the marble-processing plant in Sivas and its turbidity, suspended solids, chemical oxygen demand and total solids concentrations were about 1,914 NTU, 2,904, 150 and 4,750 mg/L, respectively. The effects of various operating parameters such as initial pH, current density and electrolysis time on turbidity, suspended solids, chemical oxygen demand and total solids removal efficiencies were investigated. The settling characteristics of waste sludge produced and energy and electrode consumption were also determined. The optimum values of initial pH, current density and electrolysis time in electrocoagulation studies carried out using aluminum electrode were found to be 7.8, 30 A/m2 and 5 min, respectively. Under these conditions, the removal efficiencies obtained for turbidity, suspended solids, chemical oxygen demand and total solids were 98.5, 99.2, 55.2 and 92.4 %, respectively. Corresponding energy and electrode consumptions were 0.143 kWh/kg SS and 0.010 kg Al/kg SS. For iron electrode, the optimum parameter values were found to be 7.8 pH, 20 A/m2 and 5 min, respectively. Under these conditions, removal efficiencies for turbidity, suspended solids, chemical oxygen demand and total solids were determined as 94.3, 99.1, 54.2, and 96.1 %, respectively. Energy and electrode consumptions were 0.0571 kWh/kg SS and 0.0206 kg Fe/kg SS, respectively. Settling characteristics of sludge produced during experiments carried out using both aluminum and iron electrodes were fairly good. The results showed that electrocoagulation method can be used efficiently for the treatment of marble processing wastewater under proper operating conditions.
Read full abstract