Abstract

Marble waste was obtained from marble processing plant wastewater with precipitation using different coagulants, such as sepiolite, zeolite, and pumice in dosages of 0.5–8 g/500 mL and mixed in 20 wt % with commercial epoxy resin. The effects of marble, coagulant type and dosage on the physicomechanical and thermal properties were investigated. The incorporation of marble processing waste particles increases the 10% decomposition temperature of pure epoxy by 5–50°C. Surface hardness, tensile strength, percentage elongation, and stress at maximum load of the composites were higher than those of pure resin, too. The composites reinforced with marble processing waste-pumice showed about 10% increase in elastic modulus, whereas the composite reinforced with marble processing waste-sepiolite or zeolite showed about 76.67–143.33% increase in elastic modulus over the pure epoxy matrix. Scanning electron microscopy (SEM) was used for characterization of surface and cross sections of the composites to verify the results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.