This paper presents a learning-based control framework for fast (< 1.5 s) and accurate manipulation of a flexible object, i.e., whip targeting. The framework consists of a motion planner learned or optimized by an algorithm, Online Impedance Adaptation Control (OIAC), a sim2real mechanism, and a visual feedback component. The experimental results show that a soft actor-critic algorithm outperforms three Deep Reinforcement Learning (DRL), a nonlinear optimization, and a genetic algorithm in learning generalization of motion planning. It can greatly reduce average learning trials (to < 20%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\%$$\\end{document} of others) and maximize average rewards (to > 3 times of others). Besides, motion tracking errors are greatly reduced to 13.29%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\%$$\\end{document} and 22.36%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\%$$\\end{document} of constant impedance control by the OIAC of the proposed framework. In addition, the trajectory similarity between simulated and physical whips is 89.09%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\%$$\\end{document}. The presented framework provides a new method integrating data-driven and physics-based algorithms for controlling fast and accurate arm manipulation of a flexible object.
Read full abstract