In this paper, we study a class of critical elliptic problems of Kirchhoff type: \t\t\t[a+b(∫R3|∇u|2−μu2|x|2dx)2−α2](−Δu−μu|x|2)=|u|2∗(α)−2u|x|α+λf(x)|u|q−2u|x|β,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\biggl[a+b \\biggl( \\int_{\\mathbb{R}^{3}}\\vert \\nabla u\\vert ^{2}-\\mu \\frac{u^{2}}{\\vert x\\vert ^{2}}\\,dx \\biggr)^{\\frac{2-\\alpha }{2}} \\biggr]\\biggl(-\\Delta u- \\mu \\frac{u}{\\vert x\\vert ^{2}}\\biggr) = \\frac{\\vert u\\vert ^{2^{*}(\\alpha )-2}u }{\\vert x\\vert ^{\\alpha }}+\\lambda \\frac{f(x)\\vert u\\vert ^{q-2}u }{\\vert x\\vert ^{\\beta }}, $$\\end{document} where a,b>0, mu in [0,1/4), alpha , beta in [0,2), and qin (1,2) are constants and 2^{*}(alpha )=6-2alpha is the Hardy–Sobolev exponent in mathbb{R}^{3}. For a suitable function f(x), we establish the existence of multiple solutions by using the Nehari manifold and fibering maps. Moreover, we regard b>0 as a parameter to obtain the convergence property of solutions for the given problem as bsearrow 0^{+} by the mountain pass theorem and Ekeland’s variational principle.
Read full abstract