Abstract
The presented work is devoted to study of the geodesic mappings of spaces with affine connection onto generalized Ricci symmetric spaces. We obtained a fundamental system for this problem in a form of a system of Cauchy type equations in covariant derivatives depending on no more than 1/2 n2(n+1)+n real parameters. Analogous results are obtained for geodesic mappings of manifolds with affine connection onto equiaffine generalized Ricci symmetric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.