Spinel-structured lithium manganese oxide (LiMn2O4) has attracted much attention because of its high energy density, low cost, and environmental impact. In this article, structural analysis methods such as powder neutron diffraction (PND), X-ray diffraction (XRD), and high-resolution transmission and scanning electron microscopies (TEM & SEM) reveal the capacity fading mechanism of LiMn2O4 as it relates to the mechanical degradation of the material. Micro-fractures form after the first charge (to 4.45 V vs. Li(+/0)) of a commercial lithium manganese oxide phase, best represented by the formula LiMn2O3.88. Diffraction methods show that the grain size decreases and multiple phases form after 850 electrochemical cycles at 0.2 C current. The microfractures are directly observed through microscopy studies as particle cracks propagate along the (1 1 1) planes, with clear lattice twisting observed along this direction. Long-term galvanostatic cycling results in increased charge-transfer resistance and capacity loss. Upon preparing samples with controlled oxygen contents, LiMn2O4.03 and LiMn2O3.87, the mechanical failure of the lithium manganese oxide can be correlated to the oxygen vacancies in the materials, providing guidance for better synthesis methods.
Read full abstract