Financial management assumes a pivotal role as a fundamental information system contributing to enterprise development. Nonetheless, prevalent methodologies frequently encounter challenges in proficiently overseeing diverse information streams inherent to financial management. This study introduces an innovative paradigm for enterprise financial management centered on the transformation of user information signals. In its initial phases, the methodology augments the Transformer network and self-attention mechanism to extract features pertaining to both users and financial data, fostering a more cohesive integration of financial and user information. Subsequently, a reinforcement learning-based alignment method is implemented to reconcile disparities between financial and user information, thereby enhancing semantic alignment. Ultimately, a signal conversion technique employing generative adversarial networks is deployed to harness user information, elevating financial management efficacy and, consequently, optimizing overall financial operations. The empirical validation of this approach, achieving an impressive mAP score of 81.9%, not only outperforms existing methodologies but also underscores the tangible impact and enhanced execution prowess that this paradigm brings to financial management systems. As such, this work not only contributes to the state of the art but also holds promise for revolutionizing the landscape of enterprise financial management.
Read full abstract