PurposeRecently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received little attention. We aimed to address this knowledge gap, particularly in the context of the UAE and investigated the embodied energy associated with the use of concrete and other materials commonly used in residential buildings in the hot desert climate of the UAE.Design/methodology/approachUsing input–output based hybrid analysis, we quantified the life-cycle embodied energy of a villa in the UAE with over 50 years of building life using the average, minimum, and maximum material service life values. Mathematical calculations were performed using MS Excel, and a detailed bill of quantities with >170 building materials and components of the villa were used for investigation.FindingsFor the base case, the initial embodied energy was 57% (7390.5 GJ), whereas the recurrent embodied energy was 43% (5,690 GJ) of the life-cycle embodied energy based on average material service life values. The proportion of the recurrent embodied energy with minimum material service life values was increased to 68% of the life-cycle embodied energy, while it dropped to 15% with maximum material service life values.Originality/valueThe findings provide new data to guide building construction in the UAE and show that recurrent embodied energy contributes significantly to life-cycle energy demand. Further, the study of material service life variations provides deeper insights into future building material specifications and management considerations for building maintenance.
Read full abstract