Uncrewed aerial vehicles (UAVs) for plant protection play a vital role in modern agricultural operations. In recent years, advancements in UAVs and pest control technologies have significantly enhanced operational efficiency. These innovations have addressed historical challenges in agricultural practices by improving automation and precision in managing insect pests, diseases, and weeds. UAVs offer high operational efficiency, wide adaptability to different terrain, and safe applications. The development and demand for these technologies have increased to boost agricultural production. In agricultural settings where conventional machinery struggles to carry out farming operations, UAVs have transformed farming practices by providing high operational efficiency and significant profitability. The integration of UAVs and other smart technologies has driven advancements. The UAV sector has received substantial attention as a convergence of production, service, and delivery, introducing synergy through the presence of several developing areas. The market for this technology is expected to grow in the future. In this comprehensive review, we analyzed an overview of historical research, diverse techniques, the transition from conventional to advanced application, development trends, and operational milestones across diverse cropping systems. We also discussed adoption and subsidy policies. In order to properly understand UAV operational efficiency, we also analyzed and discussed smart atomization systems, spray drift, droplet deposition detection technologies, and the capabilities of related technologies. Additionally, we reviewed the role of software programs, data-driven tools, biodegradable materials, payloads, batteries, sensing technologies, weather, and operational and spraying factors. Regulatory limitations, operating and farmer’s training, economic effects, and guidelines were also acknowledged in this review. This review highlights deficiencies and provides essential knowledge of the use of UAVs for agriculture tasks in different regions. Finally, we examine the urgency of UAV technology implementations in the agricultural sector. In conclusion, we summarize the integration of UAVs and their related technologies with applications and future research prospects, offering directions for follow-up research on the key technologies of UAVs and encouraging the enhancement of agricultural production management in terms of efficiency, accuracy, and sustainability.
Read full abstract