Abstract

Wild mushrooms are popular for their taste and nutritional value; however, non-experts often struggle to distinguish between toxic and non-toxic species when foraging in the wild, potentially leading to poisoning incidents. To address this issue, this study proposes a compact bilinear neural network method based on Transformer and multi-scale feature fusion. The method utilizes a dual-stream structure that integrates multiple feature extractors, enhancing the comprehensiveness of image information capture. Additionally, bottleneck attention and efficient multi-scale attention modules are embedded to effectively capture multi-scale features while maintaining low computational costs. By employing a compact bilinear pooling module, the model achieves high-order feature interactions, reducing the number of parameters without compromising performance. Experimental results demonstrate that the proposed method achieves an accuracy of 98.03%, outperforming existing comparative methods. This proves the superior recognition performance of the model, making it more reliable in distinguishing wild mushrooms while capturing key information from multiple dimensions, enabling it to better handle complex scenarios. Furthermore, the development of public-facing identification tools based on this method could help reduce the risk of poisoning incidents. Building on these findings, the study suggests strengthening the research and development of digital agricultural technologies, promoting the application of intelligent recognition technologies in agriculture, and providing technical support for agricultural production and resource management through digital platforms. This would provide a theoretical foundation for the innovation of digital agriculture and promote its sustainable development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.