Recent studies have revealed the dynamic and complex evolution of CLCA1 gene homologues in and between mammals and birds with a particularly high diversity in mammals. In contrast, CLCA2 has only been found as a single copy gene in mammals, to date. Furthermore, CLCA2 has only been investigated in few mammalian species but not in birds. Here, we established core genomic, protein biochemical and expressional properties of CLCA2 in several bird species and compared them with mammalian CLCA2. Chicken, turkey, quail and ostrich CLCA2 were compared to their mammalian orthologues using in silico, biochemical and expressional analyses. CLCA2 was found highly conserved not only at the level of genomic and exon architecture but also in terms of the canonical CLCA2 protein domain organization. The putatively prototypical galline CLCA2 (gCLCA2) was cloned and immunoblotting as well as immunofluorescence analyses of heterologously expressed gCLCA2 revealed protein cleavage, glycosylation patterns and anchoring in the plasma membrane similar to those of most mammalian CLCA2 orthologues. Immunohistochemistry found highly conserved CLCA2 expression in epidermal keratinocytes in all birds and mammals investigated. Our results suggest a highly conserved and likely evolutionarily indispensable role of CLCA2 in keratinocyte function. Its high degree of conservation on the genomic, biochemical and expressional levels stands in contrast to the dynamic structural complexities and proposed functional diversifications between mammalian and avian CLCA1 homologues, insinuating a significant degree of negative selection of CLCA2 orthologues among birds and mammals. Finally, and again in contrast to CLCA1, the high conservation of CLCA2 makes it a strong candidate for studying basic properties of the functionally still widely unresolved CLCA gene family.
Read full abstract