Barley used for malting is a fine-tuned organism, and it requires breeding within narrow gene pools for realistic cultivar enhancement. Significant phenotypic advance within such narrow gene pools has been achieved and the necessary genetic variability for breeding progress has been documented, but it was not well understood. This study was conducted to further characterize detectable genetic variability present within a select set of four closely related malting barley cultivars using three types of molecular markers: RFLP, PCR-RAPD and AFLP. The markers that identified polymorphism among the select malting cultivars tended to link with each other and to map in chromosomal regions associated with quantitative trait loci (QTLs) for agronomic and malting quality traits that differed among the four cultivars. Although RFLPs identified the least amount of polymorphism, the differences detected by the RFLPs best fit the chronology of the cultivars. These results indicate that a large amount of the genetic variability necessary for cultivar improvement may have originally been present in the breeding gene pool, but does not rule out de novo variation. Study of the populations from crosses within this narrow germplasm is needed to further elucidate the basis of the phenotypic variability found among these select barley cultivars.
Read full abstract