Our understanding of microbial variation in male reproductive tissues is poorly understood, both regarding how it varies spatially across different tissues and its ability to affect male sperm and semen quality. To redress this gap, we explored the relationship between male sperm viability and male gut and reproductive tract microbiomes in the Pacific field cricket, Teleogryllus oceanicus. We selected cohorts of males within our populations with the highest and lowest natural sperm viability and characterized the bacterial microbiota present in the gut, testes, seminal vesicle, accessory glands and the spermatophore (ejaculate) using 16S ribosomal RNA gene metabarcoding. We identified bacterial taxa corresponding to sperm viability, highlighting for the first time an association between the host's microbial communities and male competitive fertilization success. We also found significant spatial variation in bacterial community structure of reproductive tissue types. Our data demonstrate the importance of considering the microbial diversity of both the host gut and reproductive tract when investigating male fertility in wildlife and potentially human clinical settings.
Read full abstract