Lipid droplets (LDs) are ubiquitous and specialized organelles in eukaryotic cells. Consisting of a triacylglycerol core surrounded by a monolayer of membrane lipids, LDs are decorated with proteins and have myriad functions, from carbon/energy storage to membrane lipid remodeling and signal transduction. The biogenesis and turnover of LDs are therefore tightly coordinated with cellular metabolic needs in a fluctuating environment. Lipid droplet turnover requires remodeling of the protein coat, lipolysis, autophagy and fatty acid β-oxidation. Several key components of these processes have been identified in Chlamydomonas (Chlamydomonas reinhardtii), including the major lipid droplet protein, a CXC-domain containing regulatory protein, the phosphatidylethanolamine-binding DTH1 (DELAYED IN TAG HYDROLYSIS1), two lipases and two enzymes involved in fatty acid β-oxidation. Here, we review LD turnover and discuss its physiological significance in Chlamydomonas, a major model green microalga in research on algal oil.
Read full abstract