Oxygen delivery from the retinal vasculature plays a crucial role in maintaining normal retinal metabolic function. Therefore, measurements of retinal vascular oxygen tension (PO(2)) and PO(2) longitudinal gradients (gPO(2)) along retinal blood vessels may help gain fundamental knowledge of retinal physiology and pathological processes. Three-dimensional retinal vascular PO(2) maps were generated in rats by optical section phosphorescence lifetime imaging. A major retinal artery and vein pair, and a smaller blood vessel (microvessel) between them were segmented, and PO(2) along each blood vessel was measured. In each blood vessel, an average PO(2) (mPO(2)) was calculated, and gPO(2) was determined by linear regression analysis. Reproducibility of measurements was assessed by calculating intraclass correlation coefficient (ICC) of repeated measurements. The correlations of mPO(2) and gPO(2) measurements with systemic arterial oxygen tension (P(a)O(2)) and carbon dioxide tension (P(a)CO(2)) was determined. Measurements of mPO(2) and gPO(2) in retinal arteries, microvessels and veins were reproducible (ICC > 0.86; p < 0.01; N = 8), except for retinal arterial gPO(2). Retinal arterial, microvessel and venous mPO(2) were 41 ± 8, 32 ± 8 and 25 ± 7mmHg, respectively (mean ± SD; N = 27). Retinal arterial mPO(2) was correlated with P(a)O(2) and P(a)CO(2) (R > 0.44; p < 0.03), while retinal microvessel and venous mPO(2) were only correlated with P(a)CO(2) (R > 0.68; p < 0.01). Retinal microvessel gPO(2) (-3.8 ± 1.5mmHg/100μm) was significantly steeper (more negative) than venous gPO(2) (0.02 ± 0.43mmHg/100μm) (p < 0.01; N = 27), and neither were significantly correlated with P(a)O(2) or P(a)CO(2). Quantitative measurement of mPO(2) and gPO(2) in the retinal microvasculature was demonstrated. A significant decrease in PO(2) was observed along most retinal microvessels, indicative of substantial oxygen extraction by the retinal tissue. This method has the potential to help elucidate retinal microvascular oxygen transport in health and disease.
Read full abstract