In Southern Europe where whole maize kernels are ground and used for making bread and other food products, infection of the kernels by Fusarium verticillioides and subsequent fumonisin contamination pose a serious safety issue. The influence of environmental factors on this fungal infection and mycotoxin accumulation as the kernel develops has not been fully determined, especially in such food grade maize. The objectives of the present study were to determine which environmental factors may contribute to kernel invasion by F. verticillioides and fumonisin accumulation as kernels develop and dry in naturally infected white maize. Three maize hybrids were planted at two different sowing dates and kernel samples were collected 20, 40, 60, 80 and 100days after silking. The percentage of kernels infected, and ergosterol and fumonisin contents were recorded for each sampling. F. verticillioides was the most prevalent species identified as the kernels developed. Temperature and moisture conditions during the first 80days after silking favored natural kernel infection by F. verticillioides rather than by Aspergillus or Penicillium species. Fumonisin was found in kernels as early as 20days after silking however significant fumonisin accumulation above levels acceptable in the EU did not occur until after physiological maturity of the kernel indicating that kernel drying in the field poses a high risk. Our results suggest that this could be due to increasing kernel damage by insects that favor fungal development, such as the damage by the moth Sitotroga cerealella, and to the occurrence of stress conditions for F. verticillioides growth that could trigger fumonisin biosynthesis, such as exposure to suboptimal temperatures for growth simultaneously with low water activity.
Read full abstract