Abstract
Heterosis is the superior performance of hybrids over their inbred parents. Despite its importance, little is known about the genetic and molecular basis of this phenomenon. Heterosis has been extensively exploited in plant breeding, particularly in maize (Zea mays, L.), and is well documented in the B73 and Mo17 maize inbred lines and their F1 hybrids. In this study, we determined the dry matter, the levels of starch and protein components and a total of 24 low-molecular weight metabolites including sugars, sugar-phosphates, and free amino acids, in developing maize kernels between 8 and 30 days post-pollination (DPP) of the hybrid B73 x Mo17 and its parental lines. The tissue specificity of amino acid and protein content was investigated between 16 and 30 DPP. Key observations include: (1) most of the significant differences in the investigated tissue types occurred between Mo17 and the other two genotypes; (2) heterosis of dry matter and metabolite content was detectable from the early phase of kernel development onwards; (3) the majority of metabolites exhibited an additive pattern. Nearly 10% of the metabolites exhibited nonadditive effects such as overdominance, underdominance, and high-parent and low-parent dominance; (4) The metabolite composition was remarkably dependent on kernel age, and this large developmental effect could possibly mask genotypic differences; (5) the metabolite profiles and the heterotic patterns are specific for endosperm and embryo. Our findings illustrate the power of metabolomics to characterize heterotic maize lines and suggest that the metabolite composition is a potential marker in the context of heterosis research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.