As a general definition, nanotechnology is involved with objects on the nano scale, or materials measuring between 1 and 100 nm. It was found a good definition that is practical and unconstrained by any arbitrary size limitations: The design, characterization, production, and application of structures, devices, and systems by controlled manipulation of size and shape at the nanometer scale that produces structures, devices, and systems with at least one novel/superior characteristic or property (Bawa et al., 2005). Nanotechnology has contributed to the development of a great diversity of materials as those used in electronic, optoelectronic, biomedical, pharmaceutical, cosmetic, energy, catalytic, and materials applications. In the manufacturing community, the most profitable trail for nanoscale particles and materials have been in the areas of sunscreen, magnetic recording tape, automotive catalyst supports, biolabeling, chemical-mechanical polishing, electroconductive coatings, and optical fibers. However, the emergence of nanotechnology presents a number of potential environmental benefits. This potential impact area could be divided into three categories: treatment and remediation, sensing and detection, and pollution prevention. Some nanoparticles destroy contaminants, for instance, while others sequester them. The specific nanotechnologies that it will be discussed hereafter focus on site remediation and waste water treatment. Besides the applications for soil, groundwater, and wastewater, a number of nanotechnologies for air remediation are also in development. Carbon nanotubes, for example, have been recognized for their ability to adsorb dioxin much more strongly than traditional activated carbon. Smaller particle size enables the development of smaller sensors, which can be deployed more easily into remote locations. The ability of nanotechnology to abate pollution production is in progress and could potentially catalyze the most revolutionary changes in the environmental field (Watlington, 2005).
Read full abstract