Background: Recently, superparamagnetic and electromagnetic nano-materials have been extensively studied and their potential applications have also been investigated in various fields. In this regard, currently, Fe3O4 NPs are valuable candidates as diagnostic agents such as magnetic resonance imaging, enzyme immobilization, biosensing and cell labeling, and therapeutic probes, including drug delivery, bacteria detection, magnetic separation, and hyperthermia agents. Objective: In this study, electrochemical synthesis of Cu2+ cations-doped superparamagnetic magnetite nanoparticles (Cu-SMNPs) and their in situ surface coating with saccharides (i.e., glucose, sucrose and starch) are reported. The prepared glucose/Cu-SMNPs, sucrose/Cu-SMNPs and starch/Cu-SMNPs samples are characterized by structural, magnetic and morphological analyses by XRD, FT-IR, FE-SEM, EDAX and VSM. The suitability of the prepared samples for biomedical use is also proved. Methods: A simple cathodic electrochemical set-up was used to fabricate the iron oxide samples. The bath electrolyte was one litre deionized water containing 1.5g iron chloride, 3g iron nitrate, 0.5g copper chloride and 0.5g saccharide (i.e., glucose or sucrose or starch). The cathode and anode electrodes were connected to a DC power supply (PROVA 8000) as the power source. The deposition experiments were conducted at 10 mA cm-2 for 30 min. For the preparation of glucose/Cu-SMNPs, sucrose/Cu-SMNPs and starch/Cu-SMNPs samples, three electrodeposition experiments were carried out in three similar baths with only a change in the dissolved saccharide type. The prepared SMNPs samples were characterized by structural, morphological and magnetic analyses including X-ray powder diffraction (XRD, a Phillips PW-1800 diffractometer Smart Lab), field-emission scanning electron microscopy (FE-SEM, Mira 3-XMU with accelerating voltage of 100 kV), transmission electron microscopy (TEM, model Zeiss EM900 with an accelerating voltage of 80 kV), fourier transform infrared (FT-IR, a Bruker Vector 22 Fourier transformed infrared spectrometer) and vibrating sample magnetometers (VSM, model Lakeshore 7410). Results: Three types of metal-cations doped superparamagnetic magnetite nanoparticles (SMNPs), glucosegrafted Cu2+-doped MNPs (glucose/Cu-SMNPs), sucrose-grafted Cu2+-doped SMNPs (sucrose/Cu-SMNPs) and starch-grafted Cu2+-doped SMNPs (starch/Cu-SMNPs), were prepared for the first time. Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy and energy dispersive X-ray techniques proved the presence of saccharide capped layer on the surface of deposited SMNPs and also copper cations doping on their crystal structures. Superparamagnetic behaviors, including low coercivity and remanence values, were observed for all the prepared samples. Conclusion: SMNPs capped with saccharides (i.e., glucose, sucrose and starch) were successfully synthesized via one-pot simple deposition procedures. These particles showed suitable superparamagnetic properties with negligible remanence values and proper saturation magnetization, thus proving that they all have required physicochemical and magnetic characteristics for biomedical purposes.