Abstract

Recently, we introduced magnetophoretic circuits, composed of overlaid magnetic and metallic layers, as a novel single-cell analysis (SCA) tool. We showed the ability of these circuits in organizing large single-particle and particle-pair arrays. Assembling the cells in microarrays is performed with the ultimate goal of running temporal phenotypic analyses. However, for long-term studies, a suitable microenvironment for the cells to normally grow and differentiate is needed. Towards this goal, in this study, we run required biocompatibility tests, based on which we make the magnetophoretic-based microchip a suitable home for the cells to grow. The results confirm the ability of these chips in cell handling and show no unwanted cell behavior alteration due to the applied shear stress on them, the magnetic labeling, or the microenvironment. After this achievement, this tool would be ready for running important single-cell studies in oncology, virology, and medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.