High power density energy regeneration is one of the effective solutions to solve the contradiction between improving the damping performance and energy consumption of active suspension. The hydraulic commutator is used to realize hydraulic rectification and hydraulic variable speed/pump/motor with few teeth difference gear pairs is used to match the speed, combined with permanent magnet motor power generation and power supply to put forward kilowatt level high power density mechanical-electrical-hydraulic regenerative suspension system for high-speed tracked vehicles. The mathematical model and fluid-solid-thermo-magnetic multiphysics coupling model are built to analyze the damping performance and regenerative characteristics of the system under passive and semi-active working conditions. The simulation results show that the damping force of the system increases with the increase of the road excitation amplitude and the semi-active control can be realized by adjusting the duty cycle with the PWM control rectifier module. The high power density mechanical-electrical-hydraulic regenerative suspension system can realize kilowatt level energy regeneration, and the regenerative efficiency is more than 50% under low-frequency excitation. The temperature rise of the system is low during operation, which is helpful to improve the reliability and service life.
Read full abstract