Abstract

We describe the offline machine learning (ML) development for an effort to precisely regulate the Gradient Magnet Power Supply (GMPS) at the Fermilab Booster accelerator complex via a Field-Programmable Gate Array (FPGA). As part of this effort, we created a digital twin of the Booster-GMPS control system by training a Long Short-Term Memory (LSTM) to capture its full dynamics. We outline the path we took to carefully validate our digital twin before deploying it as a reinforcement learning (RL) environment. Additionally, we demonstrate the use of a Deep Q-Network (DQN) policy model with the capability to regulate the GMPS against realistic time-varying perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call