This paper presents a comparative study of two consequent-pole switched-flux permanent magnet (CP-SFPM) machines with different U-shaped PM arrangements. In order to address the flux barrier effect in a sandwiched SFPM machine, two different alternate U-shaped PM designs are introduced to improve the torque capability, forming two CP-SFPM machine topologies. In order to reveal the influence of different magnet designs on the torque production, a simplified PM magneto-motive force (MMF)-permeance model is employed to identify the effective working harmonics in the two CP-SFPM machines. The torque contributions of the main working harmonics are subsequently quantified by a hybrid finite-element (FE)/analytical method. Multi-objective genetic algorithm (GA) optimization is then employed to optimize the design parameters of the proposed CP-SFPM machines. In addition, the electromagnetic characteristics of the CP-SFPM machines with two U-shaped PM arrangements are investigated and compared by the FE method. Finally, a 6/13-pole CP-SFPM machine with an optimally selected U-shaped PM structure is manufactured and tested to validate the FE analyses.