BackgroundEsophageal squamous cell carcinoma (ESCC) is a malignancy with high incidence in several regions of China, and the prognosis of patients with ESCC is unfavorable. Evodiamine (Evo), a small molecule derived from the traditional Chinese herb Evodia rutaecarpa, has shown anti-cancer efficacy in numerous human malignancies but not in ESCC. PurposeTo determine whether Evo induces cell-cycle arrest and apoptosis in ESCC in vitro and in vivo and elucidate the underlying mechanisms. MethodsATPlite and colony formation assay were used to validate the inhibiting effect of Evo on three ESCC cells in vitro; Two subcutaneous tumor models of ESCC cells were used to evaluate the anti-ESCC effect of Evo and assess the biosafety of Evo in vivo; RNAseq and Database of KEGG pathway analysis provided a direction for the mechanistic study of Evo; FACS was used to detect Evo-induced cell cycle arrest and cell apoptosis in ESCC cells; Western blot and QPCR were respectively used to detect the level of related genes and proteins in Evo-treated ESCC cells; SiRNA and other experimental techniques were used to identify the molecular mechanism of Evo-induced ESCC cell cycle arrest and cell apoptosis. ResultsEvo significantly suppressed the growth of ESCC both in vitro and in vivo. Mechanistically, Evo induced M-phase cell-cycle arrest by inactivation of CUL4A E3 ligase, which mediates degradation blockage of p53 and transcriptional activation of p21. With the prolonged treatment time, Evo triggered both Noxa-dependent intrinsic and DR4-dependent extrinsic cell apoptosis in two ESCC cell lines. ConclusionOur findings revealed the anti-tumor efficacy and mechanisms of Evo, providing a solid scientific basis for Evo as an attractive choice for ESCC treatment.
Read full abstract