Abstract
Exisulind (sulindac sulfone) and three highly potent derivatives, OSI-461 (CP461), OSIP486823 (CP248), and OSIP487703, inhibit growth and induce apoptosis in SW480 human colon cancer cells, with IC(50)s of 200, 2, 0.1, and 0.003 micromol/L, respectively. The latter three compounds, but not exisulind, induce marked M-phase cell cycle arrest in these cells. This effect seems to be independent of the known ability of these compounds to cause activation of protein kinase G. When tested at twice their IC(50) concentration for growth inhibition, OSI-461, OSIP486823, and OSIP487703 cause depolymerization of microtubules in interphase cells, inhibit spindle formation in mitotic cells, and induce multinucleated cells. In vitro tubulin polymerization assays indicate that all three compounds interact with tubulin directly to cause microtubule depolymerization and/or inhibit de novo tubulin polymerization. These results suggest that the dual effects of OSI-461, OSIP486823, and OSIP487703 on impairment of microtubule functions and protein kinase G activation may explain the potent antiproliferative and apoptotic effects of these compounds in cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.