Notwithstanding the rapid developments in precision medicine in recent years, lung cancer still has a low survival rate, especially lung squamous cell cancer (LUSC). The tumor microenvironment (TME) plays an important role in the progression of lung cancer, in which high neutrophil levels are correlated with poor prognosis, potentially due to their interactions with tumor cells via pro-inflammatory cytokines and chemokines. However, the precise mechanisms of how neutrophils influence lung cancer remain unclear. This study aims to explore these mechanisms and develop a prognosis predictive model in LUSC, addressing the knowledge gap in neutrophil-related cancer pathogenesis. LUSC datasets from the Xena Hub and Gene Expression Omnibus (GEO) databases were used, comprising 473 tumor samples and 195 tumor samples, respectively. Neutrophil contents in these samples were estimated using CIBERSORT, xCell, and microenvironment cell populations (MCP) counter tools. Differentially expressed genes (DEGs) were identified using DEseq2, and a weighted gene co-expression network analysis (WGCNA) was performed to identify neutrophil-related genes. A least absolute shrinkage and selection operator (LASSO) Cox regression model was constructed for prognosis prediction, and the model's accuracy was validated using Kaplan-Meier survival curves and time-dependent receiver operating characteristic (ROC) curves. Additionally, genomic changes, immune correlations, drug sensitivity, and immunotherapy response were analyzed to further validate the model's predictive power. Neutrophil content was significantly higher in adjacent normal tissue compared to LUSC tissue (P<0.001). High neutrophil content was associated with worse overall survival (OS) (P=0.02), disease-free survival (DFS) (P=0.02), and progression-free survival (PFS) (P=0.03) using different software estimates. Nine gene modules were identified, with blue and yellow modules showing strong correlations with neutrophil prognosis (P<0.001). Eight genes were selected for the prognostic model, which accurately predicted 1-, 3-, and 5-year survival in both the training set [area under the curve (AUC) value =0.60, 0.63, 0.66, respectively] and validation set (AUC value =0.58, 0.58, 0.59, respectively), with significant prognosis differences between high- and low-risk groups (P<0.001). The model's independent prognostic factors included risk group, pathologic M stage, and tumor stage (P<0.05). A further molecular mechanism analysis revealed differences between risk groups were revealed in immune checkpoint and human leukocyte antigen (HLA) gene expression, hallmark pathways, drug sensitivity, and immunotherapy responses. This study established a risk-score model that effectively predicts the prognosis of LUSC patients and sheds light on the molecular mechanisms involved. The findings enhance the understanding of neutrophil-tumor interactions, offering potential targets for personalized treatments. However, further experimental validation and clinical studies are required to confirm these findings and address study limitations, including reliance on public databases and focus on a specific lung cancer subtype.
Read full abstract