Abstract Endocrine-resistance remains a major challenge for treatment of breast cancer. Multiple mechanisms for endocrine resistance have been proposed, including altered expression of ER co-regulators such as Retinoic Acid Receptor Alpha (RARα). Furthermore, crosstalk between estradiol and RA signaling is known and upregulation of RARα has been observed in tamoxifen resistance. We propose a novel treatment paradigm for a newly-defined subset of HR+ patients based on our discovery of a super-enhancer (SE) associated with the RARA locus. SEs are large, highly active chromatin regions that pinpoint cancer vulnerabilities. The RARA SE-identified vulnerability can be targeted using the potent, selective, and metabolically stable RARα agonist SY-1425 (tamibarotene). SY-1425 is approved in Japan to treat Acute Promyelocytic Leukemia, has a well-established efficacy and safety profile, and may enhance response to hormonal therapy (HT) in this newly-defined subset of HR+ patients potentially delaying the need for alternate treatment. Tumor samples from 42 breast cancer patients were analyzed across a range of molecular subtypes. We identified an SE linked to the RARA gene in 54.5% of the hormone positive patient samples. RARA SEs predicted sensitivity to SY-1425 in 12 breast cancer cell lines confirming their functional role, and showed a correlation with RARA gene expression. A panel of 37 breast cancer cell lines was tested for SY-1425 anti-proliferative activity and gene expression levels, and identified RARA as the single best predictor of response. Proliferation of RARA-high cells was inhibited by SY-1425 with low nanomolar EC50s. Transcriptional profiling was performed on 4 HR+ and 3 HER2+/HR- breast cancer cell lines and analyzed by GSEA to examine the molecular response to SY-1425. Signatures for growth including E2F, MYC, DNA replication, and cell cycle were significantly downregulated while retinol metabolism and luminal signaling were upregulated. Estrogen signaling was also significantly altered by SY-1425, supporting known crosstalk between RARα and ER. Consistent with differentiation, CYP26A1 and VE-Cadherin were induced and Actin and Ki67 were diminished at relevant concentrations of SY-1425 and could serve as pharmacodynamic markers of response. To test responses to SY-1425 in vivo, two cell line-derived models and two patient-derived breast cancer models (one RARA-high, and one RARA-low each) were treated with SY-1425. SY-1425 inhibited tumor growth in the RARA-high models, but not the RARA-low models (43% versus 0% TGI). Consistent with the observed changes in transcription, SY-1425 in combination with tamoxifen synergistically inhibited proliferation of RARA-high breast cancer cell lines. Although a few clinical studies have investigated the use of ATRA in HR+ breast cancer without success, our results suggest that patient selection based on the RARA SE may predict which HR+ breast cancer patients could derive benefit by adding an RARα agonist to HT. The potential to prolong or increase the clinical effect of anti-estrogen therapy with SY-1425, which has improved potency, selectivity, and PK stability versus ATRA, would be an attractive strategy to explore. Citation Format: McKeown MR, Fiore C, Lee E, Eaton ML, Orlando D, Guenther MG, Collins C, Chen MW, Fritz CC, di Tomaso E. A novel subgroup of estrogen receptor positive breast cancer may benefit from super-enhancer guided patient selection for retinoic acid receptor α agonist treatment [abstract]. In: Proceedings of the 2016 San Antonio Breast Cancer Symposium; 2016 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2017;77(4 Suppl):Abstract nr P6-11-18.