Abstract

Perceptual brightness and color contrast decrease after seeing a light temporally modulating along a certain direction in a color space, a phenomenon known as contrast adaptation. We investigated whether contrast adaptation along the luminance direction arises from modulation of luminance signals or apparent brightness signals. The stimulus consisted of two circles on a gray background presented on a CRT monitor. In the adaptation phase, the luminance and chromaticity of one circle were temporally modulated, while the other circle was kept at a constant luminance and color metameric with an equal-energy white. We employed two types of temporal modulations, namely, in luminance and brightness. Chromaticity was sinusoidally modulated along the L-M axis, leading to dissociation between luminance and brightness (the Helmholtz-Kohlrausch effect). In addition, luminance modulation was minimized in the brightness modulation, while brightness modulation was minimized in the luminance modulation. In the test phase, an asymmetric matching method was used to measure the magnitude of contrast adaptation for both modulations. Our results showed that, although contrast adaptation along the luminance direction occurred for both modulations, contrast adaptation for luminance modulation was significantly stronger than that for the brightness modulation regardless of the temporal frequency of the adaptation modulation. These results suggest that luminance modulation is more influential in contrast adaptation than brightness modulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call