The step-up converters are widespread use in many applications, including powered vehicles, photovoltaic systems, continuous power supplies, and fuel cell systems. The reliability, quality, maintainability, and reduction in size are the important requirements in the energy conversion process. Interleaving method is one of advisable solution for heavy-performance applications, its harmonious in circuit design by paralleling two or more identical converters. This paper investigates the comparison performance of a two-phase interleaved boost converter with the traditional boost converter. The investigation of validation performance was introduced through steady-state analysis and operation. The operation modes and mathematical analysis are presented. The interleaved boost converter improves low-voltage stress across the switches, low-input current ripple also improving the efficiency compared with a traditional boost converter. To validate the performance in terms of input and output ripple and values, the two converters were tested using MATLAB/SIMULINK. The results supported the mathematical analysis. The cancelation of ripple in input and output voltage is significantly detected. The ripple amplitude is reducing in IBC comparing with a traditional boost converter, and the ripple frequency is doubled. This tends to reduce output filter losses, and size.
Read full abstract