Multilevel inverters have gained significant attention in recent years due to their ability to achieve higher voltage and lower harmonic distortion compared to conventional two-level inverters. Pulse width modulation (PWM) techniques play a crucial role in controlling multilevel inverters by generating the required switching signals for their power electronic devices. This paper presents a comprehensive comparative analysis of various PWM techniques employed in multilevel inverters, including sinusoidal pulse width modulation (SPWM), space vector pulse width modulation (SVPWM), carrier-based pulse width modulation (CBPWM), and selective harmonic elimination (SHEPWM). Each PWM technique's advantages, limitations, and suitability for different multilevel inverter topologies are discussed. Furthermore, recent advancements and hybrid PWM techniques are also examined to explore potential improvements in performance and efficiency. This paper aims to provide researchers, engineers, and practitioners with valuable insights into selecting the most appropriate PWM technique for their specific multilevel inverter applications, considering factors such as performance requirements, cost constraints, and ease of implementation.
Read full abstract