Identifying clinical neuropathic pain phenotypes is a first step to better understand the underlying pain mechanisms after spinal cord injury (SCI). The primary purpose of the present study was to characterize multidimensional neuropathic pain phenotypes based on quantitative sensory testing (QST), pain intensity, and utilization of catastrophizing coping strategies. Thermal perception, thermal pain, and vibratory perception thresholds were assessed above and below the level of injury (LOI) in 101 persons with SCI and neuropathic pain, 18 persons with SCI and no neuropathic pain, and 50 able-bodied, pain-free controls. Cluster analysis of QST z-scores below the LOI, pain intensity ratings, and the Coping Strategies Questionnaire (CSQ) catastrophizing subscale scores in subjects with neuropathic pain resulted in two phenotypes: severe neuropathic pain (SNP) with greater pain intensity (7.39 ± 1.57) and thermal and vibratory sensitivity compared with the moderate neuropathic pain (MNP; 5.40 ± 1.43). A factor analysis including all CSQ subscales, the Neuropathic Pain Symptom Inventory (NPSI) total score, and thermal pain sensitivity above and below the LOI resulted in three factors: (1) adaptive pain coping including increasing activities, diverting attention, and reinterpreting pain sensations; (2) catastrophizing, neuropathic pain, and thermal sensitivity including greater NPSI total score, thermal pain sensitivity below the LOI, and catastrophizing; and (3) general pain sensitivity including greater thermal pain sensitivity above the LOI and lower catastrophizing. Our results suggest that neuropathic pain symptom severity post-SCI is significantly associated with residual spinothalamic tract function below the LOI and catastrophizing pain coping.