The cavity wall is an important part of a cavity receiver in determining the receiver efficiency. Using solar selective reflector (SSR) materials with low solar absorptivity and high thermal emissivity for the cavity wall design is one efficient way to improve the receiver efficiency. In this work, we present a systematic study of the optical and high-temperature stability performances of six different SSR materials: one refractory ceramic fiber based substrate material (Fiberfrax 140) and five metallic oxide coatings which are prepared by mixing metallic oxide powders of alumina, magnesium oxide and titanium dioxide with commercial inorganic adhesives. The thermal stability was studied by heating up and keeping the six candidate materials in atmospheric conditions at a temperature of 1250 °C for 200 h. The spectrum of hemispherical reflectance in the spectrum band 0.25–25 μm was measured for analyzing the optical performance of the candidate materials. The obtained results show that all the six materials studied have good solar selective reflection characteristics, i.e, low solar absorptivity and relatively high thermal emissivity. Especially, the alumina coated substrate material shows excellent performances both for thermal stability and solar selective reflection. The solar reflectivity can reach 94.6%.
Read full abstract