Black mass (BM) from spent alkaline Zn-MnO2 batteries was used for the first time as a Mn source in the preparation of Mn/TiO2 catalysts for low-temperature NH3-selective catalytic reduction (SCR) of NOx. To recover Mn species and eliminate alkali and Zn species, BM powder underwent DI-water washing, followed by carbothermal reduction. The resulting slags were further dissolved in HNO3, loaded onto TiO2 particles with ball milling, and then subjected to calcination. Nearly 100% of Zn species were removed from the BM via carbothermal reduction at 950 °C for 4 h with 5.0 wt% activated carbon. The resulting catalyst, derived from the treated BM, achieved similar NOx conversion (97%) as the catalyst prepared using a reagent-grade Mn chemical at 160 °C but a higher NOx-to-N2 conversion rate at 78%. The promoted N2 selectivity was attributed to a high Mn4+/Ti ratio and the presence of impurities from BM, such as Fe3+ ions, which enhanced oxidation ability of the catalyst. Conversely, insufficient removal of Zn or carbon additives in the slags led to a decreased Mn concentration, an increased proportion of Mn2+/Mn3+ species, increased surface OH groups, and reduced oxidation ability on the surface, thus reducing NOx conversion and N2 selectivity.
Read full abstract