Abstract

Since the landing on the lunar surface, the lunar regolith has begun to interact in different ways with landed elements, such as the wheels of a rover, astronaut suits, drills, and plants for extracting oxygen or manufacturing objects. Therefore, a strong effort has been required on Earth to fully characterise these kinds of interactions and regolith utilisation methods. This operation can only be performed by using regolith simulants, soils that are reproduced with the Earth’s rocks and minerals to match the real features. This article presents the main guidelines and tests for obtaining the properties of a generic simulant in terms of composition, physical and mechanical properties, solid–fluid interaction, and thermal properties. These parameters are needed for the designing and testing of payloads under development for planned lunar surface missions. The same tests can be performed on lunar, martian, or asteroid simulants/soils, both in laboratory and in situ. A case study is presented on the lunar simulant NU-LHT-2M, representative of the lunar highlands. The tests are performed in the context of an in situ resource utilisation (ISRU) process that aims to extract oxygen from the lunar regolith using a low-temperature carbothermal reduction process, highlighting the main regolith-related criticalities for an in situ demonstrator plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.