Poly(ADP-ribose) polymerases (PARPs) are crucial nuclear proteins that play important roles in various cellular processes, including DNA repair, gene transcription, and cell death. Among the 17 identified PARP family members, PARP1 is the most abundant enzyme, with approximately 1-2 million molecules per cell, acting primarily as a DNA damage sensor. It has become a promising biological target for anticancer drug studies. Enhanced PARP expression is present in several types of tumors, such as melanomas, lung cancers, and breast tumors, correlating with low survival outcomes and resistance to treatment. PARP inhibitors, especially newly developed third-generation inhibitors currently undergoing Phase II clinical trials, have shown efficacy as anticancer agents both as single drugs and as sensitizers for chemo- and radiotherapy. This review explores the properties, characteristics, and challenges of PARP inhibitors, discussing their development from first-generation to third-generation compounds, more sustainable synthesis methods for discovery of new anti-cancer agents, their mechanisms of therapeutic action, and their potential for targeting additional biological targets beyond the catalytic active site of PARP proteins. Perspectives on green chemistry methods in the synthesis of new anticancer agents are also discussed.
Read full abstract