Brain injuries by physical trauma, epileptic seizures, or microbial infection upset the osmotic homeostasis resulting in cell swelling (cerebral edema), inflammation, and apoptosis. Expression of the neurotrophin receptor p75NTR is increased in the injured tissue and axon regeneration is repressed by the Nogo receptor using p75NTR as the signal transducer. Hence, p75NTR seems central to the injury response and we wished to determine the signals that regulate its expression. Here, we demonstrate that tonicity mediated cell swelling rapidly activates transcription of the endogenous p75NTR gene and of a p75NTR promoter-reporter gene in various cell types. Transcription activation is independent of de novo protein synthesis and requires the activities of phospholipase C, protein kinase C, and nitric-oxide synthase. Hence, p75NTR is a nitric oxide effector gene regulated by osmotic swelling, thereby providing a strategy for therapeutic intervention to modulate p75NTR functions following injury.