Abstract
The ionotropic glutamate receptor (GluR) subunits GluR2, GluR5 and GluR6 are subject to RNA editing at their Q/R sites, resulting in significant alterations in the channel properties of the receptors. RNA editing at the Q/R site of GluRs is both developmentally and regionally regulated. Here we provide the first quantitative measurements of both mRNAs of the GluR subunits and mRNAs of the RNA editing enzymes ADAR1-ADAR3 in a comparison of the efficiency of editing at the Q/R site with the expression levels of ADAR mRNA in human brain. We demonstrate that the Q/R site of GluRs in white matter is edited significantly less than in grey matter. In addition, by means of quantitative reverse transcription-polymerase chain reaction methods, we demonstrate that the relative abundance of ADAR2 mRNA to GluR2 mRNA is significantly lower in white matter than in grey matter and that the GluR2 Q/R site editing decreased only when the ratio of ADAR2 mRNA (not that of ADAR1 mRNA) to GluR2 mRNA dropped below a threshold (20 x 10(-3)). These results suggest that Q/R site of GluRs editing is regulated in a regional, and hence presumably cell-specific, manner and that the GluR2 Q/R site editing is critically regulated by ADAR2 in human brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.