Machine Learning is an area concerned with the automation of the process of knowledge acquisition. Neural networks generally represent their knowledge at the lower level, while knowledge based systems use higher level knowledge representations. The method we propose here, provides a technique which automatically allows us to extract production rules from the lower level representation used by a single-layered neural networks trained by Hebb's rule. Even though a single-layered neural network can not model complex, nonlinear domains, their strength in dealing with noise has enabled us to produce correct rules in a noisy domain.
Read full abstract