Meltability, melt profile parameters, and hardness of cheddar cheese prepared with varying levels of calcium (Ca) and phosphorus (P) content, residual lactose content, and salt-to-moisture ratio were studied at 0, 1, 2, 4, 6, and 8 mo of ripening. Meltability, melt profile parameters, and hardness of cheddar cheeses measured at 0, 1, 2, 4, 6, and 8 mo of ripening showed significant interaction between the levels of Ca and P, residual lactose, salt-to-moisture ratio, and ripening time for most of the properties studied. cheddar cheese prepared with high Ca and P (0.67% Ca and 0.53% P) resulted in up to 6.2%, 4.5%, 9.6%, 5.0%, and 22.8% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 23.5%, 9.6%, and 3.2% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low Ca and P (0.53% Ca and 0.39% P). cheddar cheese prepared with high lactose (1.4%) content resulted in up to 7.7%, 7.0%, 4.9%, 4.2%, and 24.6% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 14.7%, 12.7%, and 2.8% decrease in meltability, flow rate, and extent of flow respectively compared to the cheddar cheese prepared with low lactose (0.78%) content. cheddar cheese prepared with high salt-to-moisture ratio (6.4%) resulted in up to 21.8%, 11.3%, 12.9%, 4.1%, and 29.4% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 13.2%, 28.6%, and 2.6% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low salt-to-moisture ratio (4.8%) during ripening.
Read full abstract