Inhibition isotherms were measured for Western Kentucky No.9 coal. Crushed and sieved coal (−25 + 140 U.S. mesh) was fluidized in 10-g batches in a 22-mm i.d. quartz reactor up to a temperature of 870 °C. The release of hydrogen sulphide during heatup under nitrogen and at the run temperature (usually 1–2 h) under the same gas (pyrolysis), hydrogen, or hydrogen/hydrogen sulphide mixtures was followed by gas chromatography. The residue or char was analysed for pyritic, organic, sulphide, sulphate, and total sulphur. Inhibition isotherms, which are pseudo-equilibria between sulphur in the char and gaseous hydrogen sulphide, were measured at 600 and 870 °C. At the lower temperature the isotherm was found to be independent of the hydrogen sulphide concentration in the gas stream and the char sulphur content remained constant at 2.6%. At 870 °C the sulphur content of the char was greater than that of the original coal when gas mixtures of 1, 3, and 6% hydrogen sulphide in hydrogen were used, indicating the necessity of maintaining low hydrogen sulphide concentration for sulphur removal. In pure hydrogen, sulphur removal increased continuously from 47% at 600 °C to 84% at 870 °C. For pyrolysis under nitrogen, sulphur removal was 40% at 600 °C and increased to 59% at 740 °C. No further removal occurred above this temperature up to 870 °C. In addition to the inhibition isotherms, sulphur-form transformation diagrams were constructed for coal treated with nitrogen, hydrogen, and hydrogen/hydrogen sulphide mixtures. Pyritic sulphur, which comprised 40% of the sulphur in the original coal, was completely converted to ferrous sulphide at 600 °C in hydrogen and 740 °C in nitrogen. At 870 °C the sulphur content of the char produced under hydrogen was 1.1% made up of 48.4% ferrous sulphide, 43.4% organic sulphur, and 8.2% sulphate.
Read full abstract